Thermal Properties of High-Volume Fly Ash Mortars and Concretes

نویسندگان

  • D. P. Bentz
  • M. A. Peltz
  • A. Durán-Herrera
  • P. Valdez
  • C. Juárez
چکیده

As sustainability moves to the forefront of construction, the utilization of high volume fly ash concrete mixtures to reduce CO2 emissions and cement consumption per unit volume of concrete placed is receiving renewed interest. Concrete mixtures in which the fly ash replaces 50 % or more of the portland cement are both economically and technically viable. This paper focuses on a characterization of the thermal properties, namely heat capacity and thermal conductivity, of such mixtures. Both the raw materials and the finished products (mortars and concretes) are evaluated using a transient plane source method. Because the specimens being examined are well hydrated, estimates of the heat capacity based on a law of mixtures with a “bound water” heat capacity value employed for the water in the mixture provide reasonable predictions of the measured performance. As with most materials, thermal conductivity is found to be a function of density, while also being dependent on whether the aggregate source is siliceous or limestone. The measured values should provide a useful database for evaluating the thermal performance of high volume fly ash concrete structures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Internal Curing of High-Performance Blended Cement Mortars:

In the twenty-first century, most high-performance concretes, and many other ordinary concretes, are now based on blended cements that contain silica fume, slag, and/or fly ash additions. Because the chemical shrinkage accompanying the pozzolanic and hydraulic reactions of these mineral admixtures is generally much greater than that accompanying conventional portland cement hydration, these ble...

متن کامل

Mixture Proportioning Options for Improving High Volume Fly Ash Concretes

High volume fly ash (HVFA) concretes are one component of creating a more sustainable infrastructure. By replacing 50 % or more of the Portland cement with fly ash, a significant reduction is achieved in the carbon footprint of the in place concrete. While HVFA mixtures can be proportioned to produce equivalent long term performance as conventional (cement-only) mixtures, performance problems a...

متن کامل

Optimization of cement and fly ash particle sizes to produce sustainable concretes

0958-9465/$ see front matter Published by Elsevier doi:10.1016/j.cemconcomp.2011.04.008 ⇑ Corresponding author. E-mail addresses: [email protected] (D.P. Bentz), (A.S. Hansen). In the drive to produce more sustainable concretes, considerable emphasis has been placed on replacing cement in concrete mixtures with more sustainable materials, both from a raw materials cost and a CO2 footprint per...

متن کامل

Lightweight Geopolymer Concrete with EPS Beads

Activation of class F fly ash with the 10 M sodium hydroxide and sodium silicate and its geopolymeric products were analysed under quasi-isothermal mode of DSC, FTIR and TG/DTA techniques. Before adding in concrete, expanded polystyrene beads were prewetted with the styrenebutadienestyrene latex aimed at to improve their bonding with geopolymer. Lightweight mortars/concretes were made from geop...

متن کامل

Effect of carbon black and fly ash co-fillers content on mechanical and thermal behaviors of styrene butadiene rubber compounds

Fly ash (FA) is produced as a waste byproduct during the burning process of coal in thermal power plants whose cost is primarily associated to cleaning and transportation. It possesses mechanical properties on account of its constituents like silica and alumina. The use of FA as filler in styrene butadiene rubber (SBR) was of researchers’ interest to reinforce and/or to reduce product cost. In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009